

Automated Feeding of Liquids in Shake Flasks

Various predefined feeding profiles allow users to quickly create individual feeding strategies for their shake flask cultures.

LIS Feeding Profiles

Additional feeding profiles are available in the LIS Software.

LIS is compatible with various substances such as sugars, alcohols as well as acids or bases.

LIS – Compatible Substances

	Compatibility of substance with LIS					
Substance		Under most	Can not	Not		
Substance		circumstances	be used	tested		
Sugar Solutions (e.g. up to 50% Glc)	×					
Viscous Solutions (e.g. up to 75% Glycerol)	×					
Aqueos Solutions (e.g. IPTG, Media, Acids, Bases, Buffer)	×					
Alcohols (e.g. 50% Ethanol, 75% Methanol)		×*				
Antifoam		×**				
Organic Solvents				×		
Phages				×		
Suspensions				×		
Solid Materials			×			

^{*} Based on the alcohol, concentration and temperature, evaporation may influence the accuracy

^{**} Accuracy can vary for different types of antifoams

LIS is compatible with all common laboratory shakers and shaking conditions.

LIS – Compatible Maximal Shaking Conditions

Shaking	Flasks fixed	Set-Up	Shake Flask Size (Total Volume)					
diameter	on tray with	Зет-Ор	I00ml	250ml	500ml	1000ml	2000ml	
25mm		Shake Flask only	250	300	250	250	250	
	Clamps	Shake Flask + "New" CGQ Sensor	250	300	300	300	250	
		Shake Flask + "Old" CGQ Sensor		300	300	300	250	
	Sticky Stuff	Without CGQ Sensor	200	200	200	250	250	
50mm		Shake Flask only	250	250	225	225	200	
	Clamps	Shake Flask + "New" CGQ Sensor	200	250	250	225	200	
		Shake Flask + "Old" CGQ Sensor		250	225	225	200	
	Sticky Stuff	Without CGQ Sensor	200	200	200	250	250	

Tests were performed with a flask filling volume of 10% and 20ml filling volume of the LIS cartridge. All data is shown in rounds per minute (rpm).

LIS is the first easy-to-use technology allowing for fed-batch experiments in shake flask cultures.

Exemplary Use Case LIS (1/2) – Fed-Batch

S. cerevisiae cultures were grown on YPD media. Cultures were performed in 250ml shake flasks with a filling volume of 10% at 30°C and shaken at 250rpm. Additional carbon source was fed to three culture using the LIS technology. Either Glucose or Glycerol was fed to the cultures over a time period of 48 or 60h by using a constant feeding profile. Biomass of the cultures was monitored online by the CGQ technology (aquila biolabs). OD was measured offline at the end of the cultures. OD = Optical Density

LIS can be used to control pH drifts of *E.coli* shake flask cultures by automatically feeding buffer to the culture.

Exemplary Use Case LIS (2/2) – pH Regulation

 $E.\ coli$ cultures were grown on LB media + 2% Glucose. Cultures were performed in 250ml shake flasks with a filling volume of 10% at 37°C and shaken at 250rpm. Additional buffer was fed to one culture using the LIS technology. 2ml of 5,5mM K2HPO4 were fed to the culture over a time period of 10h by using a constant feeding profile. Biomass of the cultures was monitored online by the CGQ technology (aquila biolabs). OD and pH was measured offline at the end of the cultures. OD = Optical Density